Pergamon Journals Ltd.

TAUTOMERIC REARRANGEMENTS AND INTRAMOLECULAR DIELS-ALDER REACTIONS OF DICYANOVINYL AND (CYANOIMINO)ALKYL GROUPS IN THE TROPOLONE SERIES

Klaus Hartke^{a)*)}, Wolfgang Richter^{a)}, Werner Massa^{b)} and Gerhard Baum^{b)}

^{a)}Institut für Pharmazeutische Chemie der Universität Marburg, Marbacher Weg 6, D-3550 Marburg/Lahn, Germany

^{b)}Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Straße

<u>Summary:</u> At room temperature the O-dicyanovinyl tropolones <u>3</u> and the O-(cyano-imino)alkyl tropolones <u>5</u> show a rapid degenerate O,O-migration of the dicyanovinyl and (cyanoimino)alkyl groups. By heating 3 and 5 in boiling toluene the Diels-Alder adducts 7 and 8 are formed.

Degenerate tautomeric rearrangements of hydrogen and other atoms or functional groups have been studied intensively during the last 25 years¹. A high migratory aptitude is shown by the acyl group in enol esters of 1,3-diketones and related systems². Due to a rather favourable geometric arrangement the acylotropic tautomerism is exceptionally rapid in 0-acyl tropolones³. As the electronic properties of an acyl group are similar to those of a dicyanovinyl or a (cyanoimino)alkyl group 4 , we have studied the degenerate tautomeric rearrangement in some O-dicyanovinyl tropolones 3 and O-(cyanoimino)alkyl tropolone 5.

Stirring tropolone <u>1</u> with 2-chloro-alkylidene malonitrile 2^5 in CH₂Cl₂ at room temperature in the presence of 1 mol of triethylamine and 0.1 mol of 4-dimethylamino pyridine⁶ leads to the formation of 3c and 3q (method a). 3a-band 3d-f are best prepared from thallium(I) troponolate⁷ and 2 in toluene between 0-65°C (method b). The 0-(cyanoimino)alkyl tropolones 5 have been obtained from 1 and 4⁸ by method a). The yields indicated refer to pure recrystallised products⁹.

		R ¹		CI CN + C=C R ² CN _2_		⊳ R ¹	3 R ¹	∽0 _R ² ∼0∽ ^C ∼Ç∽CN CN	
<u>3</u>	R ¹	R ²	mp C	yield [%]	3	R ¹	R ²	mp ^O C	yield 🕅
<u>a</u>	Н	н	122	57	e	CH ₃	н	151-152	69
b	Н	СН ₃	127	66	<u>f</u>	CH ₃	CH3	138	49
<u>c</u>	Н	^С 6 ^Н 5	172 (dec.) 74	đ	CH3	C6H5	140-141	57
d	Н	CN	111	15					

The ¹H and ¹³C NMR spectra of <u>3</u> at room temperature clearly show, that the dicyanovinyl group is migrating rapidly between both oxygens of the tropolone ring. The same is true for the (cyanoimino)alkyl group in <u>5</u>. The dipolaric intermediate of this degenerate rearrangement for the tropolone ethers <u>3</u> can be formulated as <u>6</u>. In the ¹³C NMR spectra of <u>3a-3d</u> and <u>5a</u> both carbon atoms 1 and 2 have one common broad signal around 0°C, which sharpens between room temperature and 80°C. Similarly both methyl groups adjacent to the oxygen atoms in the tropolone ring of <u>3e-g</u> and <u>5b</u> give only one common singulet at room temperature ($\delta = 2.33-2.38$ ppm)¹⁰. The ¹³C NMR data of <u>3a</u> ($\boxed{D_6}$ DMSO at 40°C) may be considered representative for the structures <u>3</u> and <u>5</u>: $\delta = 175.6$ ppm (¹J = 202 Hz, C-8); 168.5 (C-1, -2); 135.3 (C-4, -5, -6); 132.9 (C-3, -7); 111.0 (9-CN); 66.4 (²J = 11.6 Hz, C-9).

By heating <u>3q</u> in boiling toluene for 5 minutes, a new isomeric compound is formed in nearly quantitative yield. This has been identified by X-ray crystallography (see fig. 1) as the intramolecular Diels-Alder adduct <u>7d</u>: One of the cyano groups undergoes a 1,4-cycloaddition to the tropolone ring. The Diels-Alder reaction is facilitated by methyl substituents in the 7-membered ring (R^1 = CH₃) and a phenyl group in the side chain. Not all O-dicyanovinyl tropolones <u>3</u> form Diels-Alder adducts on heating: <u>3a</u> and <u>3d</u> decompose before any cyclisation occurs. Of the O-(cyanoimino)alkyl tropolones <u>5</u> only <u>5b</u> gave the cyclised product <u>8</u>.

			R ¹	r ²	mp C	yield[%]	r.t. [min]
R ¹ L CN	H-C	<u>7a</u>	H	CH3	170	66	480
γR^2	113 N C _E H _E	<u>7b</u>	Н	C ₆ H ₅	185	76	180
R	CH-O	<u>7c</u>	СНз	CH ₃	132	83	220
		<u>7d</u>	CH	CAHS	178	95	5
··· <u>/</u>		<u>8</u>	-	-	145	87	160

Fig. 1: ORTEP plot of 7d

The 2-chloro-alkylidene malonitriles $\underline{2}$ condense also with the aminotroponeimine $\underline{9}^{11}$ to form N-substituted products. In these cases, however, no degenerate N,N-migration of the dicyanovinyl group is observed. Instead the dipolaric structure $\underline{10}$ is obviously the most stable one along the reaction coordinate. This is mainly supported by the 13 C NMR data for $\underline{10a}$ ($\underline{D_6}$ DMSO at 20° C), which show an extreme high field shift for C-8 and C-9 as compared to $\underline{3a}$, large shift differences between the ring carbon atoms and a rather low field signal for the cyano groups: $\delta = 153.6ppm$ (C-1, -2); 142.6 (C-4, -6); 124.9 (9-CN); 124.2 (C-5); 112.3 (C-3, -7); 92.5 (1 J = 161 Hz, C-8); 29.9 (CH₃); 21.3 (C-9). Further evidence is given in the IR spectra by the CN stretching vibrations, which are unusually intense and shifted to rather low wave numbers: for $\underline{10a}$ 2170 and 2130cm⁻¹, for $\underline{3a}$ 2220cm⁻¹.

<u>Acknowledgements:</u> This work has been supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References and Notes

- 1 For reviews see: a) V.I.Minkin, L.P.Olekhnovich and Yu.A.Zhdanov, Molecular Design of Tautomeric Systems, Rostov on Don University Publishing House, Rostov on Don (USSR) 1977 [Chem.Abstr. <u>90</u>, 38481d (1979)]; b) V.I.Minkin, L.P.Olekhnovich and Yu.A.Zhdanov, Acc.Chem.Res. 14, 210 (1981).
- 2 a) V.I.Minkin, L.P.Olekhnovich, Yu.A.Zhdanov. V.V.Kislev, M.A.Voronov and
 Z.N.Budarina, Dokl.Akad.Nauk SSSR <u>204</u>, 1363 (1972); b) K.Hartke, D.Krampitz
 and W.Uhde, Chimia <u>27</u>, 209 (1973); c) E.Wachsen and K.Hartke, Chem.Ber. <u>108</u>, 683 (1975); d) E.Wachsen and K.Hartke, Chem.Ber. <u>108</u>, 138 (1975);
 e) A.Mannschreck and H.Dvorak, Tetrahedron Lett. <u>1973</u>, 547.
- 3 a) S.Masamune, A.V.Kemp-Jones, J.Green and D.L.Rabenstein, J.Chem.Soc., Chem.Commun. <u>1973</u>, 283; b) V.I.Minkin, L.P.Olekhnovich, Yu.A.Zhdanov,
 Z.N.Budarina and V.P.Metlushenko, Tetrahedron Lett. <u>1974</u>, 563; c) V.I.Minkin,
 L.P.Olekhnovich, Yu.A.Zhdanov, Z.N.Budarina, V.P.Metlushenko and I.B.Orenshtein,
 Zh.Org.Khim. <u>13</u>, 777 (1977); d) L.P.Olekhnovich, N.I.Borisenko, Z.N.Budarina,
 V.P.Metlushenko, Yu.A.Zhdanov and V.I.Minkin, Zh.Org.Khim. <u>18</u>, 1785 (1982).
- 4 K.Wallenfels, K.Friedrich, J.Rieser, W.Ertl and H.K.Thieme, Angew.Chem.<u>88</u>, 311 (1976); Angew.Chem.Int.Ed.Engl.<u>15</u>, 261 (1976).
- 5 For a preparation see: K.Hartke and L.Peshkar, Pharm.Zentralhalle Dtschl.<u>107</u>, 348 (1968). K.Friedrich, Angew.Chem. <u>79</u>, 980 (1967); Angew.Chem.Int.Ed.Engl. <u>6</u>, 959 (1967). C.L.Dickinson, D.W.Wiley and B.C.McKusick, J.Am.Chem.Soc. 82, 6132 (1960).
- 6 G.Höfle, W.Steglich and H.Vorbrüggen, Angew.Chem. <u>90</u>, 602 (1978); Angew.Chem. Int.Ed.Engl. 17, 569 (1978).
- 7 W.H.Nelson and M.J.Aroney, Inorg.Chem. 1973, 132.
- 8 Prepared from methyl N-cyano-thiobenzimidate with 2 moles of SO_2Cl_2 .
- 9 All new compounds mentioned in this paper showed a correct elemental analysis.
- 10 More details of the kinetics will be given in the full paper.
- 11 R.W.Brasen, H.E.Homquist and R.E.Benson, J.Am.Chem.Soc. <u>83</u>, 3125 (1961). N.Soma, J.Nakazawa, T.Watanabe, Y.Sato and G.Sunagawa, Chem.Pharm.Bull. (Tokyo) <u>13</u>, 819 (1965).

(Received in Germany 27 January 1986)